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1. Introduction

In this work we determine the modes and the frequency equation of Euler–Bernoulli beams
with discontinuous properties in the transversal section by using a dynamical basis which is
generated by a fundamental solution of a fourth-order differential equation [1–4].
Free vibrations of stepped beams have been studied by several authors applying exact

and numerical techniques. We can cite Gorman [5], Jang and Bert [6,7], Nagulseswaran [8–10],
De Rosa [11–13], Vu et al. [14], Turhan [15], Korenev and Reznikov [16], Krylov [17], among
others. The frequency equation and mode shapes have been formulated in terms of the classical
Euler basis involving the roots of the associated characteristic polynomial of a fourth-order
differential equation. The use of the dynamical basis allows the identification of factors that
frequently appear in the literature, as well as writing the frequency equations and modes in a
compact form.
We consider beams subject to general boundary conditions, which include non-classical

conditions, such as the ones found when seeking the modes of a column partially immersed in
fluid, as considered by Us̀ci"owska and Ko"odziej [18]. The continuity conditions of the physical
properties are formulated at the position of the discontinuity. The case of an intermediate support
at the discontinuity is also discussed. For the sake of clarity, in eigenanalysis we employ a matrix
see front matter r 2004 Elsevier Ltd. All rights reserved.
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approach. The same methodology can be applied to other types beams that resulting from diverse
approximations as discussed by Han et al. [19].
The matrix formulation is done in such a way that the modes are obtained from the product

of a boundary matrix and a basis matrix that involve values of the dynamical basis at points
located on the boundary and points where the discontinuities are located. The boundary matrix
carries coefficients associated with the boundary conditions and with the discontinuous
properties. This allows considering beams with more transversal sections with discontinuous
properties. It simply keeps the bordering lines and columns that correspond to the fixed but
arbitrary boundary conditions and expands the conditions for discontinuous properties inside the
boundary matrix.
In the work of Lee and Ke [20], a non-uniform beam is first approximated by a beam with a

finite number of step beams. For each stepbeam a fundamental basis is introduced. The
Wronskian of this basis is normalized to be the identity matrix at x ¼ 0: The resulting basis is just
a sort of normalization of the dynamical basis to express a solution in terms of the initial data at
x ¼ 0: The study of frequency equations usually involves the analysis of transcendental equations
that arise by using the trigonometric–hyperbolic representation of the elements of the dynamical
basis. Other approaches could be considered by writing a frequency equation in terms of a
dynamical basis.
In this work we propose a simple and effective method to study the problem of the free

vibration of a spring-restrained free-supported beam, which is quite different from all previous
studies.
2. Modal equation for beams with discontinuous cross-sections

Let us consider a double-span Euler–Bernoulli beam with a discontinuous cross-section. A
flexural movement is represented in the beam by v1ðt;xÞ in the first segment and by v2ðt;xÞ in the
second segment. The movement is then described by the Euler–Bernoulli model [22,23] in each
segment of the beam

r1A1
q2v1ðt;xÞ

qt2
þ E1I1

q4v1ðt; xÞ
qx4

¼ 0; 0oxom ; (1)

r2A2
q2v2ðt;xÞ

qt2
þ E2I2

q4v2ðt; xÞ
qx4

¼ 0; moxoL ; (2)

with the usual parameter description. For free vibrations of the harmonic type whose spatial
distribution amplitudes are X 1ðxÞ; X 2ðxÞ in each segment, as shown in the Fig. 1, we can substitute
them into Eq. (1) to obtain the spatial modal differential equations

X
ðivÞ
1 ðxÞ � a1r1A1X 1ðxÞ ¼ 0; X

ðivÞ
2 ðxÞ � a2r2A2X 2ðxÞ ¼ 0; (3,4)

where

ai ¼
o2

EiI i

; i ¼ 1; 2:
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Fig. 1. A bi-segmented beam with a discontinuity in the cross-section and an intermediate device.
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The mode is then given by

X ðxÞ ¼
X 1ðxÞ; 0pxpm;

X 2ðxÞ; mpxpL:

(
(5)

For the case of beams with one discontinuity, the solution for each segment can be conveniently
written as

X 1ðxÞ ¼ d11f1 þ d21f2 þ d31f3 þ d41f4 ¼ W1ðxÞd1;

X 2ðxÞ ¼ d12c1 þ d22c2 þ d32c3 þ d42c4 ¼ W2ðxÞd2;

where W1ðxÞ ¼ ½f1ðxÞ;f2ðxÞ;f3ðxÞ;f4ðxÞ� is a solution basis of Eq. (3), d1 is the column vector
with components d11; d21; d31; d41 employed for describing the mode in the first segment, W2ðxÞ ¼

½c1ðxÞ;c2ðxÞ;c3ðxÞ;c4ðxÞ� is a solution basis of Eq. (4), and d2 is the column vector with
components d12; d22; d32; d42 employed for describing the mode in the second segment. Generic
boundary conditions of classical or non-classical nature can be written as

A11X 1ð0Þ þ B11X
0
1ð0Þ þ C11X

00
1ð0Þ þ D11X

000
1 ð0Þ ¼ 0;

A12X 1ð0Þ þ B12X
0
1ð0Þ þ C12X

00
1ð0Þ þ D12X

000
1 ð0Þ ¼ 0;

A21X 2ðLÞ þ B21X
0
2ðLÞ þ C21X

00
2ðLÞ þ D21X

000
2 ðLÞ ¼ 0;

A22X 2ðLÞ þ B22X
0
2ðLÞ þ C22X

00
2ðLÞ þ D22X

000
2 ðLÞ ¼ 0: ð6Þ

The continuity conditions for the displacement, the inertia moment, the bending moment and the
shear force at the discontinuity point m of the transversal section, including an intermediate
device, can be written in general as

E11X 1ðmÞ þ F11X
0
1ðmÞ þ G11X

00
1ðmÞ þ H11X

000
1 ðmÞ

¼ E12X 2ðmÞ þ F12X
0
2ðmÞ þ G12X

00
2ðmÞ þ H12X

000
2 ðmÞ;

E21X 1ðmÞ þ F21X
0
1ðmÞ þ G21X

00
1ðmÞ þ H21X

000
1 ðmÞ

¼ E22X 2ðmÞ þ F22X
0
2ðmÞ þ G22X

00
2ðmÞ þ H22X

000
2 ðmÞ: ð7Þ

The substitution of Eq. (5) with the above description into the boundary and continuity
conditions leads to the matrix system

Uc ¼ 0; (8)
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where

U ¼ BU; c ¼
d1

d2

" #
:

Here, the matrix B carries the coefficients associated with the boundary and continuity conditions
(6) and (7). It is given by

B ¼

A11 B11 C11 D11 0 0 0 0 0 0 0 0 0 0 0 0

A12 B12 C12 D12 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 E11 F11 G11 H11 �E12 �F12 �G12 �H12 0 0 0 0

0 0 0 0 E21 F21 G21 H21 �E22 �F22 �G22 �H22 0 0 0 0

0 0 0 0 E31 F31 G31 H31 �E32 �F32 �G32 �H32 0 0 0 0

0 0 0 0 E41 F41 G41 H41 �E42 �F42 �G42 �H42 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 A21 B22 C21 D21

0 0 0 0 0 0 0 0 0 0 0 0 A22 B21 C22 D22

2
666666666666664

3
777777777777775

:

(9)

The matrix U carries the values of the solution basis at the ends and the conditions at the
discontinuity point, that is

U ¼

f1ð0Þ f2ð0Þ f3ð0Þ f4ð0Þ 0 0 0 0

f0
1ð0Þ f0

2ð0Þ f0
3ð0Þ f0

4ð0Þ 0 0 0 0

f00
1ð0Þ f00

2ð0Þ f00
3ð0Þ f00

4ð0Þ 0 0 0 0

f000
1 ð0Þ f000

2 ð0Þ f000
3 ð0Þ f000

4 ð0Þ 0 0 0 0

f1ðmÞ f2ðmÞ f3ðmÞ f4ðmÞ 0 0 0 0

f0
1ðmÞ f0

2ðmÞ f0
3ðmÞ f0

4ðmÞ 0 0 0 0

f00
1ðmÞ f00

2ðmÞ f00
3ðmÞ f00

4ðmÞ 0 0 0 0

f000
1 ðmÞ f000

2 ðmÞ f000
3 ðmÞ f000

4 ðmÞ 0 0 0 0

0 0 0 0 c1ðmÞ c2ðmÞ c3ðmÞ c4ðmÞ

0 0 0 0 c0
1ðmÞ c0

2ðmÞ c0
3ðmÞ c0

4ðmÞ

0 0 0 0 c00
1ðmÞ c00

2ðmÞ c00
3ðmÞ c00

4ðmÞ

0 0 0 0 c000
1 ðmÞ c000

2 ðmÞ c000
3 ðmÞ c000

4 ðmÞ

0 0 0 0 c1ðLÞ c2ðLÞ c3ðLÞ c4ðLÞ

0 0 0 0 c0
1ðLÞ c0

2ðLÞ c3ðLÞ c0
4ðLÞ

0 0 0 0 c00
1ðLÞ c00

2ðLÞ c3ðLÞ c00
4ðLÞ

0 0 0 0 c000
1 ðLÞ c000

2 ðLÞ c000
3 ðLÞ c000

4 ðLÞ

2
66666666666666666666666666666666664

3
77777777777777777777777777777777775

: (10)

Non-zero solutions of Eq. (8) are obtained for frequency values that satisfy the characteristic
equation

detðUÞ ¼ 0: (11)
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3. The dynamical basis

To solve the modal equation (8), it is necessary to introduce a basis suitable for determining
matrix (10). From the many mathematical bases available for the fourth-order equation

X ðivÞðxÞ � �4X ðxÞ ¼ 0; �4 ¼ arA ¼
o4rA

E2I2
; (12)

it is convenient to choose one that makes Eq. (10) as sparse as possible. This is accomplished by
choosing the dynamical or fundamental basis [1,3] which is generated by the solution hðxÞ of the
initial value problem

hðivÞðxÞ � �4hðxÞ ¼ 0;

hð0Þ ¼ 0; h0
ð0Þ ¼ 0; h00ð0Þ ¼ 0; h000ð0Þ ¼ 1; ð13Þ

and it first three derivatives h0ðxÞ; h00
ðxÞ; h000ðxÞ: In terms of the traditional spectral basis,

constructed using the roots of the associated characteristic polynomial PðsÞ ¼ s4 � �4; that is,

W ¼ ½sin ð�xÞ; cos ð�xÞ; sinh ð�xÞ; cosh ð�xÞ�;

we have that the fundamental solution hðxÞ has the following representation with respect to the
spectral Euler basis:

hðxÞ ¼
sinh ð�xÞ � sinh ð�xÞ

2�3
: (14)

As mentioned in the introduction, the dynamical basis appears in the mathematical literature as
well as factors or as normalized basis in several works already mentioned.
We consider in the first segment the dynamical basis

W1 ¼ ½hðx; �Þ; h0
ðx; �Þ; h00

ðx; �Þ; h000
ðx; �Þ�

and the translated dynamical basis

W2 ¼ ½hðx � m; �Þ; h0
ðx � m; �Þ; h00

ðx � m; �Þ; h000
ðx � m; �Þ�

for the second segment. Then we choose

fjðxÞ ¼ hðj�1Þðx; �1Þ; cjðxÞ ¼ hðj�1Þ
ðx � m; �2Þ; j ¼ 1; 2; 3; 4:

The fundamental response hðx; �Þ; has the same shape for each segment, but depends on different
values that the following parameters defined in Ref. [6]:

�1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21r1A1

4

q
; �2 ¼ y�1; y ¼

j
a
; (15)

j ¼

ffiffiffiffiffiffiffiffiffiffi
r2A2

r1A1

4

s
; a ¼

ffiffiffiffiffiffiffiffiffiffi
E2I2

E1I1

4

r
; (16)

take in each segment of the beam. The frequency will be then given by

o ¼ �21

ffiffiffiffiffiffiffiffiffiffi
E1I1

r1A1

s
: (17)
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Thus

f1ðxÞ ¼ hðx; �1Þ ¼
sinh ð�1xÞ � sin ð�1xÞ

2�31
;

c1ðxÞ ¼ hðx � m; �2Þ ¼
sinh ð�2ðx � mÞÞ � sin ð�2ðx � mÞÞ

2�32
:

Replacing the values at x ¼ 0; using the initial values of hðxÞ and differentiating Eq. (13) for
higher-order derivatives, we have that matrix (10) with basis values becomes more sparse, that is

U ¼

0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

f1ðmÞ f2ðmÞ f3ðmÞ f4ðmÞ 0 0 0 0

f0
1ðmÞ f0

2ðmÞ f0
3ðmÞ f0

4ðmÞ 0 0 0 0

f00
1ðmÞ f00

2ðmÞ f00
3ðmÞ f00

4ðmÞ 0 0 0 0

f000
1 ðmÞ f000

2 ðmÞ f000
3 ðmÞ f000

4 ðmÞ 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0

0 0 0 0 c1ðLÞ c2ðLÞ c3ðLÞ c4ðLÞ

0 0 0 0 c0
1ðLÞ c0

2ðLÞ c0
3ðLÞ c0

4ðLÞ

0 0 0 0 c00
1ðLÞ c00

2ðLÞ c00
3ðLÞ c00

4ðLÞ

0 0 0 0 c000
1 ðLÞ c000

2 ðLÞ c000
3 ðLÞ c000

4 ðLÞ

2
66666666666666666666666666666666664

3
77777777777777777777777777777777775

: (18)

Let us set

fijðxÞ ¼ hðiþj�2Þ
ðx; �1Þ; cijðxÞ ¼ hðiþj�2Þ

ðx � m; �2Þ: (19)

Then the modal equation Uc ¼ 0 has

U ¼

D11 C11 B11 A11 0 0 0 0

D12 C12 B12 A12 0 0 0 0

U11 U12 U13 U14 �H12 �G12 �F12 �E12

U21 U22 U23 U24 �H22 �G22 �F22 �E22

U31 U32 U33 U34 �H32 �G32 �F32 �E32

U41 U42 U43 U44 �H42 �G42 �F42 �E42

0 0 0 0 V11 V12 V13 V14

0 0 0 0 V21 V22 V23 V24

2
666666666666664

3
777777777777775

; (20)
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where

Uij ¼ Ei1f1jðmÞ þ Fi1f2jðmÞ þ Gi1f3jðmÞ þ Hi1f4jðmÞ; i; j ¼ 1; 2; 3; 4;

Vij ¼ A2ic1jðLÞ þ B2ic2jðLÞ þ C2ic3jðLÞ þ D2ic4jðLÞ; i ¼ 1; 2; j ¼ 1; 2; 3; 4: ð21Þ

4. Modes for discontinuous beams without intermediate devices

For a beam with discontinuous cross-section without any device at the discontinuity point m of
the transverse section, the continuity conditions are

X 1ðmÞ ¼ X 2ðmÞ; X 0
1ðmÞ ¼ X 0

2ðmÞ; (22)

X 00
1ðmÞ ¼ a4X 00

2ðmÞ; X 000
1 ðmÞ ¼ a4X 000

2 ðmÞ; (23)

where

a ¼

ffiffiffiffiffiffiffiffiffiffi
E2I2

E1I1

4

r
: (24)

For this kind of conditions, the matrix B becomes

B ¼

A11 B11 C11 D11 0 0 0 0 0 0 0 0 0 0 0 0

A12 B12 C12 D12 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 �1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 �1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 �a4 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 �a4 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 A21 B21 C21 D21

0 0 0 0 0 0 0 0 0 0 0 0 A22 B22 C22 D22

2
666666666666664

3
777777777777775

: (25)

It follows that the modal matrix is of the type

U ¼

D11 C11 B11 A11 0 0 0 0

D12 C12 B12 A12 0 0 0 0

f11ðmÞ f12ðmÞ f13ðmÞ f14ðmÞ 0 0 0 �1

f21ðmÞ f22ðmÞ f23ðmÞ f24ðmÞ 0 0 �1 0

f31ðmÞ f32ðmÞ f33ðmÞ f34ðmÞ 0 �a4 0 0

f41ðmÞ f42ðmÞ f43ðmÞ f44ðmÞ �a4 0 0 0

0 0 0 0 V11 V12 V13 V14

0 0 0 0 V21 V22 V23 V24

2
666666666666664

3
777777777777775

; (26)

where the components Vij are determined from Eq. (21).
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5. Discontinuous beams with an intermediate support

For a beam with an intermediate support at the discontinuity x ¼ m; the matrix B becomes
more sparse since the displacement condition at the discontinuity point m is now zero and the
shear force is not considered. We have

B ¼

A11 B11 C11 D11 0 0 0 0 0 0 0 0 0 0 0 0

A12 B12 C12 D12 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 �1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 �a4 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 A21 B21 C21 D21

0 0 0 0 0 0 0 0 0 0 0 0 A22 B22 C22 D22

2
666666666666664

3
777777777777775

:

It follows that the modal matrix is of the type

U ¼

D11 C11 B11 A11 0 0 0 0

D12 C12 B12 A12 0 0 0 0

f11ðmÞ f12ðmÞ f13ðmÞ f14ðmÞ 0 0 0 0

0 0 0 0 0 0 0 1

f21ðmÞ f22ðmÞ f23ðmÞ f24ðmÞ 0 0 �1 0

f31ðmÞ f32ðmÞ f33ðmÞ f34ðmÞ 0 �a4 0 0

0 0 0 0 V11 V12 V13 V14

0 0 0 0 V21 V22 V23 V24

2
666666666666664

3
777777777777775

; (27)

where the components Vij are computed from Eq. (21) by substituting the coefficients
in Eq. (5) corresponding to the continuity conditions. We observe that the pre-
sence of an intermediate support simplifies the matrix U and the modal analysis becomes
simpler.
6. A spring-restrained free-supported double span beam with an intermediate support

For a free-supported double span beam with an intermediate support
and restrained with a rotational spring of elasticity constant k ¼ kEI=L at the right end,
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we have

U ¼

0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

hðm; �1Þ h0
ðm; �1Þ h00

ðm; �1Þ h000
ðm; �1Þ 0 0 0 0

0 0 0 0 0 0 0 1

h0ðm; �1Þ h00
ðm; �1Þ h000ðm; �1Þ hðivÞ

ðm; �1Þ 0 0 �1 0

h00
ðm; �1Þ h000ðm; �1Þ hðivÞðm; �1Þ hðvÞ

ðm; �1Þ 0 �a4 0 0

0 0 0 0 hðg; �2Þ h0ðg; �2Þ h00
ðg; �2Þ h000

ðg; �2Þ

0 0 0 0 U85 U86 U87 U88

2
666666666666664

3
777777777777775

; (28)

where

U85 ¼ kh0ðg; �2Þ þ Lh00ðg; �2Þ; U86 ¼ kh00ðg; �2Þ þ Lh000
ðg; �2Þ;

U87 ¼ kh000ðg; �2Þ þ LhðivÞðg; �2Þ; U88 ¼ khðivÞ
ðg; �2Þ þ LhðvÞðg; �2Þ:

From the modal equation, it follows that d13 ¼ d14 ¼ d24 ¼ 0: Setting d11 ¼ 1; we get

h00ðm; �1Þ þ h000ðm; �1Þd14 ¼ 0; h000
ðm; �1Þ þ hðivÞðm; �1Þd14 � d23 ¼ 0;

hðivÞðm; �1Þ þ hðvÞðm; �1Þd12 � a4d22 ¼ 0;

hðg; �2Þd21 þ h0
ðg; �2Þd22 þ h00ðg; �2Þd23 ¼ 0;

ðkh0ðg; �2Þ þ Lh00ðg; �2ÞÞd21 þ ðkh00ðg; �2Þ þ Lh000
ðg; �2ÞÞd22 þ ðkh000

ðg; �2Þ þ Lh00ðg; �2ÞÞd23 ¼ 0:

The modes are then given by

X ðxÞ ¼
hðx; �1Þ þ s12h

0
ðx; �1Þ; 0pxpm;

s21hðx; �2Þ þ s22h
0
ðx; �2Þ þ s23h

00
ðx; �2Þ; mpxpL;

(

where

s12 ¼ d12; s21 ¼ d21; s22 ¼ D22; s23 ¼ d23;

d23 ¼ h000
ðm; �1Þ þ �41hðm; �1Þd12; d22 ¼ �41½hðm; �1Þ þ h0

ðm; �1Þ�d12;

d21 ¼
�41h

0
ðg; �2Þh

0
ðm; �1Þ þ �41h

00
ðg; �2Þhðm; �1Þ½a4d12 þ 1� þ a4h00

ðg; �2Þh
000
ðm; �1Þ

a4hðg; �2Þ
;

d12 ¼
h00
ðm; �1Þ

h000ðm; �1Þ
:

As before, the substitution of these coefficients into the last equation of the systemUc ¼ 0 leads to
the characteristic equation

D ¼ detðUÞ ¼ h00ðg; �2Þd21 þ h000ðg; �2Þd22 þ hðivÞ
ðg; �2Þd23 ¼ 0:
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7. Concluding remarks

The frequency equation and the modal system of Euler–Bernoulli beams with discontinuous
cross-section have been formulated in terms of the dynamical basis generated by the fundamental
solution hðxÞ of a fourth-order differential equation. This allowed us to determine the modes in a
systematic manner in terms of hðxÞ and its derivatives. This methodology can be applied to other
kinds of beams that result from diverse approximations such as Rayleigh, shear beams or
Timoshenko beams as discussed in Ref. [19]. In this case, Eqs. (18)–(21) are of the same form.
Only shape (14) of the generating solution hðxÞ of the dynamical basis changes for each model.
The use of the fundamental solution allows us to reproduce by limit operations the known results
for continuous cross-section beams. Also, we should observe that the two methodologies
proposed by Low [21] can be unified by choosing the dynamical basis, since hðxÞ is actually the
Laplace inverse transform of the transfer function of the fourth-order differential equation.
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